THE REVOLUTION HAS NOT BEEN TELEVISED

A Case Study in Cost-effective, Environmentally-Advantageous Kilowatt-scale CHP at USMint

Elodie Geoffroy-Michaels Vice President of Operations 161 Industrial Blvd. Turners Falls, MA 01376 www.turbosteam.com

Creating Value from Steam Pressure

THE REALITY: Shouldn't we be able to go "back to the future"?

THE REALITY:

	116 year-old Technology	Central Power Plant, ca. 2001		
Installed Capital Cost	\$300 - 1,000/kW	\$500 - 2,000+/kW		
Power Generation Efficiency	>80%	33% (U.S. average)		
Marginal Cost of Electricity, at the point of use	1 – 3 cents/kWh	4 – 10 cents/kWh		
Minimum Economic Size	50 kW	~50,000 kW		
Economic Potential for Waste Heat Recovery (CHP)?	Implicit in Design	No		
Economic Potential for CCHP?	Yes	No		
CO ₂ Emissions, at the point of electricity use	0 – 1,000 lbs/MWh	1,000 – 2,300 lbs/MWh		

Typical steam system design

^{*}PRV = Pressure Reducing Valve

A backpressure turbine delivers the same pressure drop as a PRV -- but produces useful electricity in the process.

Morning Star Design

This design generates power at the efficiency of Morning Star's boiler – or higher!

Thermodynamics							
1 st Law Balance	PRV Efficiency						
H.P. energy = L.P. energy	~100%						

This is almost 3X the efficiency of the grid!

Economic considerations

	USMint / Turbosteam Backpressure Turbine-Generator
Description	231 kW generator reduces 150 psig steam down to 5 psig Process pressure
Installed Capital Cost	\$ (\$108,900) Equipment + \$90,000 Installation Cost = \$ (90,000) Total Cost (\$861/kW) (The Turbine was installed at no cost to the Mint)
Marginal Cost of Power Generation	12 dollars/MMBTu steam \$1000/year average O&M cost All-in cost = 4.5 cents/kWh

On-site CHP is more cost-effective than the state-of-the-art central power plant!

Case Study: USMint

- USMint has installed a 231 kWe cogen plant to produce:
 - 2% of its electric load
 - Approximately 95% of the Steam used is for heating. The reminder 5% is used for the plant heat processing load.
- The building is located in Philadelphia, PA
- This plant provide heating for 517,218 Sq feet
- Heating load is seasonal with (11,500 lbs/hour at peak)
- Operating season is 6 months
- Process steam load delivered by Trigen District heating plant, @ 150 psig

Equivalent to \$12/Mlb steam

- Delivery pressure = 150 psig
- The plant uses 26,140 MWh/year, at an average price of 7 cents/kWh (Based on Fiscal Year 2001 consumption)

Case Study: USMint

- In Nov. 1997: Started up one 231 kW Turbosteam backpressure steam turbine generators.
 - To feed heating load and some process load

			November	1999 - Dece	mber 2000			
	Nov	Dec	Jan	Feb	Mar	Apr	May	Total
Electricity Produced (kWh)	53,516	96,992	70,174	117,818	114,950	89,898	6,328	549,676
Electric Savings	\$4,562.52	\$6,568.63	\$6,270.14	\$7,818.14	\$7,191.88	\$6,156.07	\$156.43	\$38,723.81
Incremental Steam Cost	\$1,581.60	\$2,538.57	\$1,983.01	\$3,310.97	\$3,312.73	\$2,617.53	\$218.65	\$15,563.06
Net Savings	\$2,980.92	\$4,030.06	\$4,287.13	\$4,507.17	\$3,879.15	\$3,538.54	-\$62.22	\$23,160.75

Mint's BackPressure Turbine

Continuation

Sample Back Pressure Turbine Data

		Metered Data									
		Into the	BPT	Out of	the BPT	Enthalpy		Energy (Mbtu) to	Incremental	Cost at	Cost
Date/Time	Month	Steam Flow	Pressure	Pressure	kWh	Steam In	Steam Out	BPT for electricity	Steam (Mlbs)	\$15/Mlb	per kWh
12/23/1999 0:00	12	12,524	130.3	4.3	208	1,193.5	1,155.3	478.5	0.401	\$6.01	\$0.0289
12/23/1999 1:00	12	12,273	129.6	4.3	207	1,193.5	1,155.3	468.0	0.392	\$5.88	\$0.0284
12/23/1999 2:00	12	11,823	125.3	4.3	199	1,193.0	1,155.3	444.9	0.373	\$5.59	\$0.0281
12/23/1999 3:00	12	11,973	125.9	4.3	200	1,193.0	1,155.3	451.3	0.378	\$5.67	\$0.0284
12/23/1999 4:00	12	12,067	125.9	4.3	199	1,193.0	1,155.3	454.9	0.381	\$5.72	\$0.0287
12/23/1999 5:00	12	12,133	126.9	4.3	202	1,193.1	1,155.3	458.8	0.385	\$5.77	\$0.0286
12/23/1999 6:00	12	12,120	126.5	4.3	200	1,193.1	1,155.3	457.7	0.384	\$5.75	\$0.0288
12/23/1999 7:00	12	11,605	121.0	4.3	192	1,192.4	1,155.3	430.7	0.361	\$5.42	\$0.0282
12/23/1999 8:00	12	11,606	120.3	4.3	191	1,192.4	1,155.3	429.9	0.361	\$5.41	\$0.0283
12/23/1999 9:00	12	11,328	117.4	4.3	185	1,192.0	1,155.3	415.4	0.348	\$5.23	\$0.0283
12/23/1999 10:00	12	11,146	113.7	4.3	179	1,191.5	1,155.3	403.4	0.339	\$5.08	\$0.0284
12/23/1999 11:00	12	10,715	110.0	4.3	173	1,191.0	1,155.3	382.4	0.321	\$4.82	\$0.0278
12/23/1999 12:00	12	10,565	107.8	4.3	169	1,190.7	1,155.3	374.0	0.314	\$4.71	\$0.0279
12/23/1999 13:00	12	10,142	103.3	4.3	161	1,190.1	1,155.3	352.5	0.296	\$4.44	\$0.0276
12/23/1999 14:00	12	9,872	99.7	4.3	154	1,189.6	1,155.3	337.8	0.284	\$4.26	\$0.0277
12/23/1999 15:00	12	9,838	98.0	4.3	151	1,189.3	1,155.3	334.0	0.281	\$4.21	\$0.0279
12/23/1999 16:00	12	9,247	91.5	4.3	138	1,188.2	1,155.3	304.2	0.256	\$3.84	\$0.0278
12/23/1999 17:00	12	8,884	88.4	4.3	133	1,187.7	1,155.3	287.6	0.242	\$3.63	\$0.0273
12/23/1999 18:00	12	8,859	87.6	4.3	131	1,187.6	1,155.3	285.7	0.241	\$3.61	\$0.0275
12/23/1999 19:00	12	9,045	90.5	4.3	136	1,188.1	1,155.3	296.1	0.249	\$3.74	\$0.0275
12/23/1999 20:00	12	9,577	95.2	4.3	146	1,188.8	1,155.3	321.0	0.270	\$4.05	\$0.0277
12/23/1999 21:00	12	9,999	101.0	4.3	155	1,189.7	1,155.3	344.0	0.289	\$4.34	\$0.0280
12/23/1999 22:00	12	10,369	104.3	4.3	162	1,190.2	1,155.3	361.8	0.304	\$4.56	\$0.0281
12/23/1999 23:00	12	10,544	106.1	4.3	166	1,190.5	1,155.3	370.6	0.311	\$4.67	\$0.0281

Net Results

- The turbine-generator installed delivered better overall economics than the current state of the art in central power plants – at just 1/500th of the size.
 - Simple payback = < 2 years
 - Estimated \$24,100 savings per system per year
- This <u>financially</u> motivated installation is currently reducing CO₂ emissions by 2,000 tons/year
 - Similar reductions have occurred for criteria pollutants (NOx, SOx, etc.)

Bottom line: The revolution has arrived

Onsite, environmentally-beneficial CHP in sub-MW sizes is available, proven and cost effective.

Can we help you find opportunities?

	Probably not attractive	Probably attractive	Drop-dead gorgeous
Steam flow rate	<3,000 lbs/hr	>3,000 lbs/hr	>10,000 lbs/hr
Inlet pressure	<125 psig	>125 psig	>150 psig
Pressure drop	<100 psi	>100 psi	>150 psi
Price of electricity	<1.5 ¢/kWh	>2 ¢/kWh	>6 ¢/kWh
Capacity factor	<25%	>25%	>50%

In short, on almost any food processing plant, district heating plant, Chemical and Lumber plant, there is an opportunity.

We know that this technology is not glamorous but:

- •It works
- •It is proven
- •It is reliable
- •And it is the most efficient way to generate electricity

You don't have to believe me!

As a steam plant owner/operator, you do not need to wait for DG / CHP – you just have to know where to look. Remember that deferring this purchase is increasing your long term cost and your plant inefficiency